

Anlage D

Nachweis Versickerungsmulde Straße nach DWA-M 153

Anlage D

Anhang B

Bewertungsverfahren nach Merkblatt DWA-M 153

Projekt:

Speyerbach Carré GbR/ Neustadt an der Weinstraße

Bebauungsplan "IBAG/ Roßlaufstraße-Nord Versickerungsanlage

Zentrale Versickerungsanlage

. (Gewässer) (πabellen A.1a und A.1b)	Турэ	(Cawassajja	unkte @
Grundwasser außerhalb von Trinkwassereinzugsgebiet	G12	G =	10

Flaghenente Absolutiv		Ledi (nebel		ිව්සිල් (බැවරිස	ien.(Fi, (Io.A.8))	Abijussbelasiung B _i
A _{u,i}	f _i	Тур	Punkte	Тур	Punkte	$B_i = f_i \times (L_i + F_i)$
0,0693	0,15	L1	1	F3	12	1,98
0,0560	0,12	L1	1	F3	12	1,60
0,0244	0,05	L1	1	F3	12	0,70
0,0118	0,03	L1	1	F3	12	0,34
0,0143	0,03	L1	1	F3	12	0,41
0,0017	0,00	L1	1	F3	12	0,05
0,0025	0,01	L1	1	F3	12	0,07
0,0069	0,02	L1	1	F3	12	0,20
0,0013	0,00	L1	1	F3	12	0,04
0,0013	0,00	L1	1	F3	12	0,04
0,0056	0,01	L1	1	F3	12	0,16
0,0014	0,00	L1	1	F3	12	0,04
0,0016	0,00	L1	1	F3	12	0,05
0,0047	0,01	L1	1	F3	12	0,13
0,1697	0,37	L1	1	F3	12	4,86
0,0072	0,02	L1	1	F3	12	0,21
0,0702	0,15	L1	1	F3	12	2,01
0,0044	0,01	L1	1	F3	12	0,13
Σ = 0,4541	1,00		Abflu	ussbelastun	$g B = \sum B_i =$	13,00

keine Regenwasserbehandlung erforderlich, wenn B ≤ G

l		
maximal zulässiger Durchgangswert D _{max} :	= G/R = 0.77	
I II I I I I I I I I I I I I I I I I I	- G/D - II U.//	
)	II	
· · · · · · · · · · · · · · · · · · ·		

voligeseinene Behendlungsmeßnehmen (Tabellen A.4a, A.4b, und A.4e)	Tryp	Durchgangswerte D _i
Versickerung durch 10 cm bewachsenen Oberboden	D 3	0,45
Sedimentationsanlage Oberflächenbeschikung 9 m³/(m²xh)	D21	0,20
Durchgangswert D = Produkt aller D _i (Absc	0,09	

Emissionswert E = B • D =	1,17

Anzustreben:

E≤G

E = 1,17

G = 10

Behandlungsbedürftigkeit genauer prüfen, wenn:

E > G

Anlage E

Berechnung Versickerungsmulde Straße nach DWA-A 138

Version 2006
Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße-Nord

Datum: 17. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Muldenversickerung, öffentl. Verkehrsanlagen u. 10 % Baugrundstücke T = 10 Jahre

Nr.	angeschlossene Teilfläche A_E [m²]	mittlerer Abfluss- beiwert Psi,m [-]	undurchlässige Fläche A_u [m²]	Beschreibung der Fläche
1	6925,08	0,10	692,51	Baugrundstücke O-01 - 14
2	559,73	1,00	559,73	M-01 Straße
3	487,22	0,50	243,61	M-01 PKW-Parkstände
4	117,67	1,00	117,67	N-01 Straße
5	285,00	0,50	142,50	N-01 PKW-Parkstände
6	17,07	1,00	17,07	W-01 - 07 Fußweg
7	25,00	1,00	25,00	W-01 - 07 MSP
8	137,50	0,50	68,75	W-01 - 07 PKW-Parkstände
9	13,26	1,00	13,26	W-08 - 13 Fußweg
10	25,00	1,00	25,00	W-08 -13 MSP
11	112,50	0,50	56,25	W-08 - 13 PKW-Parkstände
12	13,95	1,00	13,95	W 14 - 19 Fußweg
13	15,72	1,00	15,72	W-14 - 19 MSP
14	93,97	0,50	46,98	W-14 - 19 PKW-Parkstände
15	1696,77	1,00	1696,77	öffentliche Straße
16	144,35	0,50	72,17	öffentliche PKW-Parkstände
17	699,68	1,00	699,68	öffentliche Mulde
18	46,55	1,00	46,55	Absetzbecken
19	9. 1			
20				
Gesamt	11416,02	0,40	4553,17	

Risikomaß

Verwendeter Zuschlagsfaktor f_z

Version 2006
Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße-Nord

Datum: 17. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Muldenversickerung, öffentl. Verkehrsanlagen u. 10 % Baugrundstücke T = 10 Jahre

Eingangsdaten			
angeschlossene undurchlässige Fläche	A_u	4553	m²
mittlere Versickerungsfläche	A_S	1065.0	m²
wassergesättigte Bodendurchlässigkeit	k_f	2.9e-6	m/s
Niederschlagsbelastung	Station	Neustadt	
	n	0.1	1/a
Zuschlagsfaktor	f_z	1,2	

Bemess	ung der V	ersickeru	ingsmulde
D [min]	r_D(n) [l/(s·ha)]	V [m³]	Erforderliche Größe der Anlage
15 20	238,9	143,3	erforderliches Speichervolumen
30	202,3 157,3	161,4 187,6	$V = 264,3 \text{ m}^3 \qquad V = \left[(A_u + A_S) \cdot 10^{-7} \cdot r_{D(n)} - A_S \cdot \frac{k_f}{2} \right] \cdot D \cdot 60 \cdot f_Z$
45 60	120,3 98,6	214,0 232,6	
90 120 180	69,2 53,9 38,0	241,9 248,3	mittlere Einstauhöhe
240 360	29,6 20,9	256,7 260,7 264,3	$z = 0.25 \text{ m}$ $z = V / A_S$
540 720	14,8 11,6	263,2 257,8	rechnerische Entleerungszeit
1080 1440	8,3 6,7	242,5 230,2	$t_E = 47,55 \text{ h}$ $t_E = 2 \cdot z / k_f$
2160	5,1	205,4	Neckweis des Estles sussessit für sed/e
2880 3600	4,3 3,5	180,7 109,4	Nachweis der Entleerungszeit für n=1/a vorh. t_E = 23,97 h < erf. t_E = 24 h
4320	2,9	26,4	

Speyerbach Carré GbR

Neustadt an der Weinstraße, IBAG/Roßlaufstraße Nord

Anlage E

Ermittlung Flächen Einzugsgebiet Versickerungsanlagen

Bereich Nord, Ostflügel

Private Flächen

BA-Nr.	Flächentyp	A _E (m²)	Abflussbeiwert	A _u (m²)
O-01-14	Baugrundstücke	6.925,08	0,10	692,51
Zwischensumme	*******	6.925,08		692,51

Öffentliche Flächen

1	Straße	848,83	1,00	848,83
2	Mulde	426,60	1,00	426,60
Zwischensumme		1.275,42		1.275,42
Gesamtsumme		8.200,50		1.967,93

Speyerbach Carré GbR

Neustadt an der Weinstraße, IBAG/Roßlaufstraße Nord

Anlage E

Ermittlung Flächen Einzugsgebiet Versickerungsanlagen

Bereich Nord, Mitte, West- und Nordflügel

Private Flächen

BA-Nr.	Flächentyp	A _E (m²)	Abflussbeiwert	A _u (m²)
M-01	Straße	559,73	1,00	559,73
	PKW-Parkstände	487,22	0,50	243,61
N-01	Straße	117,67	1,00	117,67
	PKW-Parkstände	285,00	0,50	142,50
W-01-W-07	F. (0, 1) 7	17.07	1.00	47.07
VV-U1-VV-U7	Mülltonnensammelplati	17,07 25,00	1,00	17,07 25,00
	PKW-Parkstände	137,50	0,50	68,75
	1=-72			
W-08-W-13		13,26	1,00	13,26
	Mülltonnensammelplat	25,00	1,00	25,00
	PKW-Parkstände	112,50	0,50	56,25
W-14-W-19	Fußweg	13,95	1,00	13,95
	Mülitonnensammelplatz	15,72	1,00	15,72
	mantermentalimitelpiag			
**************************************	PKW-Parkstände	93,97	0,50	46,98

Öffentliche Flächen

1	Straße	847,94	1,00	847,94
2	PKW-Parkstände	144,35	0,50	72,17
3	Mulde	273,08	1,00	273,08
4	Absetzbecken	46,55	1,00	46,55
Zwischensumm	e	1.265,38		1.239,75
Gesamtsumme		3.168,95		2.585,23

Anlage E

Speyerbach Carré GbR

Neustadt an der Weinstraße, IBAG/Roßlaufstraße Nord

Nachweise Versickerungsmulde Nord

Nachweis mittlere Versickerungsfläche

Fläche Wasserspiegellinie (m²)	Fläche Muldensohle (m²)	gewählte mittlere Versickerungsfläche (m²)	erforderliche mittlere Versickerungs- fläche(m²)
1170,542	1035,327	1102,93	1065,00

Nachweis Speichervolumen zwischen Wasserspiegellinie und Muldensohle

Fläche Wasserspiegellinie (m²)	Fläche Muldensohle (m²)	gewählte mittlere Versickerungs- fläche (m²)	h (m)	gewähltes Versickerungs- volumen (m³)	erfoderliches Versickerungs- volumen (m³)
1170,542	1035,327	1102,93	0,25	275,73	264,30

Nachweis zusätzliches Speichervolumen zwischen Muldenoberkante und Wasserspiegellinie

 ne Oberkante kerungsmulde (m²)	Fläche Wasserspiegel- linie (m²)	gewählte mittlere Versickerungs- fläche (m²)	h (m)	gewähltes Versickerungsvolumen (m³)
 1223,437	1170,542	1196,99	0,10	119,70

Nachweis Varianten I - IV befestigte Mulden

Speyerbach Carré GbR

Neustadt an der Weinstraße, IBAG/ Roßlaufstraße-Nord

Fließberechnung Variante I (Einfassung Flachbordstein FB 10 x 20 m, h = 5 cm)

Ε

1,80 0,07 Muldenbreite

max. Muldentiefe

l_E (‰) K_{St} r_{hy} (m) A (m²) | Igesamt (m) I_{u2/3} (m) յ_ալ (m) Boben Bunten Bordsteinneigung (1:n) spiegelabschnitt (m) Wasserspiegelhöhe (m) Wasser0,01

5,00

20

90'0 0,01

0,02 0,12

1,80 1,90

1,800 1,802

1,90

1,80

1,00

0,05

0,02

0,02 0,07

0,05

Q (m3/s)

Fließberechnung Variante II (Einfassung Rundbordstein 15 x 22 cm, h = 4 cm)

1,70 0,08

max. Muldentiefe

Muldenbreite

	Q (m³/s)	•	
	l _E (‰)		
	Kst]
	r _{hy} (m)	•	
	A (m²)		
	Igesamt (m)		
	l _{u2/3} (m)		
	I _{u1} (m)		
	ω		
Bordstein-	neigung	(1:n)	
Wasser-	spiegelab-	schnitt (m)	
Wasser.	sniedelhöhe (m)	(m) amamaganda	

schnitt (m) (1:n) 1,703 - 1,703 - 1,70 0,05 0,03 70 5,00 0.04 1,00 1,70 1,703 0,04 1,78 0,11 0,06 70 5,00		0.02	60.0
schnitt (m) (1: n) 1,703 - 1,703 - 1,70 0,04 1,78 0,11 0,06 70			
schnitt (m) (1: n) - 1,703 - 1,70 0,04 1,78 0,04 1,78 0,14 0,06		5.00	5,00
schnitt (m) (1:n) - 1,703 - 1,70 0,05 0.04 1,00 1,70 1,703 0.04 1,78 0.11		70	20
schnitt (m) (1: n) - 1,703 - 1,70 0.04 1,78 0		L	
schnitt (m) (1:n) -		0,05	0.11
schnitt (m) (1:n) - 1,703 0,04 1,00 1,70 1,703	·	1.70	1.78
Schnitt (m) (1:n) - 0,04 1,70 - 1,70			0.04
schnitt (m) (1:n) (0.04 - 1.00		1,703	1,703
Schnift (m) (1: 0,04		, 1	1,70
	(1:n)		1,00
	schnitt (m)	0,04	0,04
<u>. </u>	pregerment (m)	0,04	80'0

Fließberechnung Variante III (ohne Einfassung)

Ε

Muldenbreite

max. Muldentiefe (b/1

1,60

	Q (m³/s)	0.09
	I _E (%)	5.00
	Kst	02
	r _{hy} (m)	0,07
	A (m²)	0,11
	Igesamt (m) A (m²)	1,62
	l _{uzı3} (m)	•
	l _{u1} (m)	1,617
	æ	•
	Bordstein- neigung (1:n)	t
Н	Wasser- spiegelab- schnitt (m)	0,10
	Wasser- spiegelhöhe (m)	0,10

Fließberechnung Variante IV (Einfassung einseitig Rundbordstein 15 x 22 cm, h = 4 cm)

max. Muldentiefe Muldenbreite

71,55 0,10

0.03	0.10	
5.00	5.00	
70	20	
0.04	0.07	
90'0	0.12	
1,43	1.77	
-	0.17	
1,428	1,428	
J	1,55	
1	ı	
90'0	0,04	
90'0	0,10	

Speyerbach Carré GbR

Neustadt an der Weinstraße, IBAG/ Roßlaufstraße-Nord

Mulde Ostflügel

15
15
5

Mulde Westflügel

T (Jahren)	D (min)	Nieder- schlagsspende (I/s x ha)	A _u (ha)	Q (I/s)
30	15	294,60	0,259	76,161
10	15	238,90	0,259	61,761
5	15	203,80	0,259	52,687

Anlage G

Nachweis Wohnanlage Nord nach DWA-A 138

Arbeitsblatt DWA-A 138

A138-XP

Version 2006
Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage N-01 begrüntes Dach mit Rigolenanlage

Ange	Angeschlossene Flächen				
Nr.	angeschlossene Teilfläche A_E [m²]	mittlerer Abfluss- beiwert Psi,m [-]	undurchlässige Fläche A_u [m²]	Beschreibung der Fläche	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	645,50	0,50	322,75	begrünte Dachfläche N-01	
Gesamt	645,50	0,50	322,75		

Risikomaß

Verwendeter Zuschlagsfaktor f_z

Version 2006
Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage N-01 begrüntes Dach mit Rigolenanlage

Eingangsdaten			
angeschlossene undurchlässige Fläche Höhe der Rigole	A_u b	323 0,66	
Breite der Rigole	h		
Drosselabfluss	b Q_Dr	1,60	m I/s
Speicherkoeffizient des Füllmaterials	s_R	0,95	
wassergesättigte Bodendurchlässigkeit	k_f	2,9e-6	m/s
Innendurchmesser des Rohres	d_i		m
Aussendurchmesser des Rohres	d_a		m
Wasseraustrittsfläche	A_Austritt		cm²/m
Anzahl der Rohre	i –	0	
Niederschlagsbelastung	Station	Neustadt	
	n	0.1	1/a
Zuschlagsfaktor	f_z	1,2	

Bemess	ung der V	ersicken	ungsrigole
D [min]	r_D(n) [l/(s·ha)]	 [m]	Erforderliche Größe der Anlage
15	238,9	8,3	Gesamtspeicherkoeffizient
20	202,3	9,3	s_RR = 0,95 $ s_{RR} = \frac{s_R}{b \cdot h} \left[b \cdot h + i \cdot \frac{\pi}{4} \cdot \left(\frac{1}{s_B} \cdot d_i^2 - d_a^2 \right) \right] $
30	157,3	10,9	$\begin{bmatrix} s_{RR} - 0.93 \\ b \cdot h \end{bmatrix}$
45	120,3	12,4	orfordarligha Digalanlänga
60	98,6	13,5	erforderliche Rigolenlänge
90	69,2	14,2	$I = 18,2 \text{ m}$ $I = \frac{A_u \cdot 10^{-7} \cdot r_{D(n)} - Q_{Dr}}{b \cdot h \cdot s_{RR}} + (b + \frac{h}{2}) \cdot \frac{k_f}{R}$
120	53,9	14,6	$\frac{b}{D \cdot 60 \cdot f_z} + (b + \frac{n}{2}) \cdot \frac{h_f}{2}$
180	38,0	15,3	effektives Rigolenspeichervolumen
240	29,6	15,7	V = 18.2 m ³
360	20,9	16,3	
540	14,8	16,7	
720	11,6	16,9	
1080	8,3	17,1	
1440	6,7	17,3	
2160	5,1	17,8	rechnerische Entleerungszeit
2880	4,3	18,2	$t = 99.6 \mathrm{h}$ $t_F = \frac{V}{V}$
3600	3,5	16,9	$t_E = 99,6 \text{ h}$ $t_E = \frac{V}{\frac{k_f}{2} \cdot (b + \frac{h}{2}) \cdot I + Q_{Dr}}$
4320	2,9	15,5	2 2 2
	1		

Speyerbach Carré GbR

Neustadt an der Weinstraße, IBAG/Roßlaufstraße Nord

Anlage G

Ermittlung Flächen Einzugsgebiet Versickerungsanlagen

Bereich Nordflügel

Private Flächen

BA-Nr.	Flächentyp	A _E (m ²)	Abflussbeiwert	A _u (m²)
N-01	begrüntes Dach	645,50	0,50	322,75
Gesamtsumme		645,50		322,75

Anlage H

Nachweis Wohnanlage Mitte nach DWA-A 138

Arbeitsblatt DWA-A 138

Seite 1

A138-XP

Version 2006
Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage M-01 begrüntes Dach mit Rigolenanlage

	schlossene F	mittlerer Abfluss-	undurchlässige	
Nr.	Teilfläche A_E [m²]	beiwert Psi,m	Fläche A_u [m²]	Beschreibung der Fläche
1 2 3 4 5	1371,40	0,50	685,70	begrünte Dachfläche M-01
5 6 7 8 9				
10 11 12 13 14				
15 16 17 18 19 20		-		
esamt	1371,40	0,50	685,70	

Di	CI	10	ma	17
	21	NU	ma	uэ

Verwendeter Zuschlagsfaktor f_z

Version 2006
Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage M-01 begrüntes Dach mit Rigolenanlage

			•
angeschlossene undurchlässige Fläche	A_u	686	
Höhe der Rigole	h	0,66	m
Breite der Rigole	b	1,60	m
Drosselabfluss	Q_Dr		l/s
Speicherkoeffizient des Füllmaterials	s_R	0,95	
wassergesättigte Bodendurchlässigkeit	k_f	3,8e-5	m/s
Innendurchmesser des Rohres	d_i		m
Aussendurchmesser des Rohres	d_a		m
Wasseraustrittsfläche	A_Austritt		cm²/m
Anzahl der Rohre	i	0	
Niederschlagsbelastung	Station	Neustadt	
	n	0.1	1/a
Zuschlagsfaktor	f_z	1,2	

Bemess	Bemessung der Versickerungsrigole				
D	r_D(n)		Erforderliche Größe der Anlage		
[min]	[l/(s·ha)]	[m]			
15	238,9	17,0	Gesamtspeicherkoeffizient s_RR = 0,95 $s_{RR} = \frac{s_R}{b \cdot h} \cdot \left[b \cdot h + i \cdot \frac{\pi}{4} \cdot \left(\frac{1}{s_R} \cdot d_i^2 - d_a^2 \right) \right]$ erforderliche Rigolenlänge $I = 25,1 \text{ m}$ $I = \frac{A_u \cdot 10^{-7} \cdot r_{D(n)} - Q_{Dr}}{\frac{b \cdot h \cdot s_{RR}}{D \cdot 60 \cdot f_Z} + (b + \frac{h}{2}) \cdot \frac{k_f}{2}}$ effektives Rigolenspeichervolumen $V = 25,2 \text{ m}^3$		
20	202,3	18,9			
30	157,3	21,5			
45	120,3	23,8			
60	98,6	25,1			
90	69,2	24,8			
120	53,9	24,2			
180	38,0	22,8			
240	29,6	21,4			
360	20,9	19,0	rechnerische Entleerungszeit $t_E = 7,6 \text{ h}$ $t_E = \frac{V}{\frac{k_f}{2} \cdot (b + \frac{h}{2}) \cdot I + Q_{Dr}}$		
540	14,8	16,2			
720	11,6	14,2			
1080	8,3	11,5			
1440	6,7	9,9			
2160	5,1	8,1			
2880	4,3	7,1			
3600	3,5	5,9			
4320	2,9	5,0			

Speyerbach Carré GbR

Neustadt an der Weinstraße, IBAG/Roßlaufstraße Nord

Anlage H

Ermittlung Flächen Einzugsgebiet Versickerungsanlagen

Bereich Mitte

Private Flächen

BA-Nr.	Flächentyp	A _E (m²)	Abflussbeiwert	A _u (m²)
M-01	begrüntes Dach I	600,90	0,50	300,45
	begrüntes Dach II	645,50	0,50	322,75
	begrüntes TG-Dach	124,98	0,50	62,49
	· · · · · · · · · · · · · · · · · · ·			
Gesamtsumme		1.371,39	_i	685,69

Anlage I

Nachweis Wohnanlage Ost nach DWA-A 138

Version 2006

Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7

Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage Ostflügel Muldenrigolenkombination

Ange	Angeschlossene Flächen					
Nr.	angeschlossene Teilfläche A_E [m²]	mittlerer Abfluss- beiwert Psi,m [-]	undurchlässige Fläche A_u [m²]	Beschreibung der Fläche		
1 2 3 4	236,00	1,00	236,00	Dachfläche Ostflügel		
5 6 7						
8 9 10 11			1 ° .			
12 13 14 15		1				
16 17 18			,			
19 20			7			
Gesamt	236,00	1,00	236,00			

Dame .		E CONTRACTOR		-
D :	OI	ko	m	71/
		PS ()		-11 \
	OI.	\sim	HIC	AIJ

Verwendeter Zuschlagsfaktor f_z

Version 2006

Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7

65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage Ostflügel Muldenrigolenkombination

Eingangsdaten			
angeschlossene undurchlässige Fläche	A_u	236	m²
Zuschlagsfaktor	f_z	1,2	
Niederschlagsbelastung	Station	Neustadt	
	n_M	0,1	1/a
	n_R	0,1	1/a
Muldenparameter:			
mittlere Versickerungsfläche	A_S,M	36	m²
wassergesättigte Bodendurchlässigkeit	k_f,M	1,0e-4	m/s
Rigolenparameter:			
Höhe der Rigole	h_R	0,7	m
Breite der Rigole	b_R	0,8	m
Speicherkoeffizient des Füllmaterials	s_R	0,95	
Innendurchmesser des Rohres	d_i		m
Aussendurchmesser des Rohres	d_a		m
mittlerer Drosselabfluss	Q_Dr		l/s
wassergesättigte Bodendurchlässigkeit	k_f,R	3,4e-5	m/s

Bemess	ung des N	/lu-Ri-Ele	mentes 1. Bemessung Mulde
D [min]	r_D(n) [l/(s·ha)]	V_M [m³]	Erforderliche Größe der Mulde
15 20 30 45 60 90 120 180 240 360 540 720 1080 1440 2160 2880 3600 4320	238,9 202,3 157,3 120,3 98,6 69,2 53,9 38,0 29,6 20,9 14,8 11,6 8,3 6,7 5,1 4,3 3,5 2,9	5,1 5,3 5,4 4,8 3,8 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0	erforderliches Speichervolumen der Mulde $V_{M} = 5,4 \text{ m}^{3} \qquad V_{M} = \left[(A_{u} + A_{S,M}) \cdot 10^{-7} \cdot r_{D(n)} - A_{S,M} \cdot \frac{k_{f,M}}{2} \right] \cdot D \cdot 60 \cdot f_{Z}$

Version 2006

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein

Lizenznr.: 400-0706-0602

Dimensionierung von Versickerungsanlagen

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage Ostflügel Muldenrigolenkombination

Bemess	ung des M	/lu-Ri-Ele	ementes 2. Bemessung Rigole
D [min]	r_D(n) [l/(s·ha)]	L_R [m]	Erforderliche Größe der Anlage
15 20 30 45 60 90 120 180 240 360 540 720 1080 1440 2160 2880 3600 4320	238,9 202,3 157,3 120,3 98,6 69,2 53,9 38,0 29,6 20,9 14,8 11,6 8,3 6,7 5,1 4,3 3,5 2,9	3,19 4,86 7,16 9,31 10,66 10,93 10,95 10,71 10,27 9,39 8,25 7,35 6,11 5,43 4,65 4,21 3,53 2,96	$ \begin{aligned} & \underline{\text{Gesamtspeicherkoeffizient}} \\ & \mathbf{s}_{\text{RR}} = 0, 95 \end{aligned} \qquad \mathbf{s}_{RR} = \frac{\mathbf{s}_{R}}{\mathbf{b}_{R} \cdot \mathbf{h}_{R}} \cdot \left[\mathbf{b}_{R} \cdot \mathbf{h}_{R} + \frac{\pi}{4} \cdot \left(\frac{1}{\mathbf{s}_{R}} \cdot \mathbf{d}_{i}^{2} - \mathbf{d}_{a}^{2} \right) \right] \\ & \underline{\text{erforderliche Rigolenlänge}} \\ & \mathbf{I}_{\text{R}} = \frac{(A_{u} + A_{S,M}) \cdot 10^{-7} \cdot r_{D(n)} - Q_{Dr} - \frac{V_{M}}{D \cdot 60 \cdot f_{Z}}}{\frac{\mathbf{b}_{R} \cdot \mathbf{h}_{R} \cdot \mathbf{s}_{RR}}{D \cdot 60 \cdot f_{Z}} + (\mathbf{b}_{R} + \frac{\mathbf{h}_{R}}{2}) \cdot \frac{\mathbf{k}_{f,R}}{2}} \end{aligned} \\ & \underline{\text{effektives Rigolenspeichervolumen}} \\ & \mathbf{V}_{\text{L}} = 5, 5 \mathbf{m}^{3} \\ & \underline{\mathbf{rechnerische Entleerungszeit}} \\ & \mathbf{t}_{\text{E}} = \frac{V_{R}}{\frac{\mathbf{k}_{f,R}}{2} \cdot (\mathbf{b}_{R} + \frac{\mathbf{h}_{R}}{2}) \cdot I_{R} + Q_{Dr}} \\ & \underline{\text{effektives Mulden-Rigolenspeichervolumen}} \\ & \mathbf{V}_{\text{L}} = \mathbf{V}_{\text{L}} = \mathbf{V}_{\text{L}} + \mathbf{V}_{\text{L}} = \mathbf{V}_{\text{R}} + \mathbf{V}_{\text{R}} = \mathbf{V}_{\text{R}} + \mathbf{V}_{\text{L}} = \mathbf{V}_{\text{L}} + \mathbf{V}_{\text{L}} = \mathbf{V}_{\text{L}} + \mathbf{V}_{\text{L}} = \mathbf{V}_{\text{L}} + V$

3. Festlegung Muldenabmessungen

<u>Muldenbreite</u>

Muldenlänge

erforderliche Muldentiefe

b_M = 0,8 m

 $I_M = 11,0 \text{ m}$

 $z_M = 0,61 \text{ m}$

Überprüfung der Muldenfläche:

vorh. A_S,M = 8,8 m² < gew. A_S,M = 36,0 m²

rechnerische Entleerungszeit:

t E = 3,4 h

Nachweis der Entleerungszeit für n=1/a:

vorh. $t_E = 1,0 h < erf. t_E = 24 h$

Arbeitsblatt DWA-A 138

A138-XP

Version 2006

Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein

Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage Ostflügel Muldenversickerung

Ange	schlossene F	Tächen		
Nr.	angeschlossene Teilfläche A_E [m²]	mittlerer Abfluss- beiwert Psi,m [-]	undurchlässige Fläche A_u [m²]	Beschreibung der Fläche
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20	236,00	1,00	236,00	Dachfläche Ostflügel
Gesamt	236,00	1,00	236,00	

Risikomaß

Verwendeter Zuschlagsfaktor f_z

Version 2006
Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage Ostflügel Muldenversickerung

Eingangsdaten			
angeschlossene undurchlässige Fläche	A_u	236	m²
mittlere Versickerungsfläche	A_S	42	m²
wassergesättigte Bodendurchlässigkeit	k_f	3,4e-5	m/s
Niederschlagsbelastung	Station	Neustadt	
	n	0.1	1/a
Zuschlagsfaktor	f_z	1,2	

Bemess	sung der V	ersicken	ungsmulde
D [min]	r_D(n) [l/(s·ha)]	V [m³]	Erforderliche Größe der Anlage
15	238,9	6,4	
20	202,3	7,1	erforderliches Speichervolumen
30	157,3	7,9	$V = 8.8 \text{ m}^3$ $V = \left[(A_u + A_S) \cdot 10^{-7} \cdot r_{D(n)} - A_S \cdot \frac{k_f}{2} \right] \cdot D \cdot 60 \cdot f_Z$
45	120,3	8,5	[
60	98,6	8,8	
90	69,2	7,8	
120	53,9	6,8	
180	38,0	4,4	mittlere Einstauhöhe
240	29,6	1,9	$z = 0.21 \text{ m} \qquad z = V / A_S$
360	20,9	0,0	
540	14,8	0,0	
720	11,6	0,0	rechnerische Entleerungszeit
1080	8,3	0,0	$t = 3,41 h$ $t_E = 2 \cdot z/k_t$
1440	6,7	0,0	
2160	5,1	0,0	
2880	4,3	0,0	Nachweis der Entleerungszeit für n=1/a
3600	3,5	0,0	vorh. t_E = 1,27 h < erf. t_E = 24 h
4320	2,9	0,0	VOIII. (_L = 1,21 11 \ C11. (_L = 24 11
		4	

Version 2006

Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung:

Dezentrale Versickerungsanlage Ostflügel begrüntes Dach mit Rigolenanlage

Ange	schlossene F	Tächen			
Nr.	angeschlossene Teilfläche A_E [m²]	mittlerer Abfluss- beiwert Psi,m [-]	undurchlässige Fläche A_u [m²]	Beschreibung der Fläche	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	236,00	0,50	118,00	begrünte Dachfläche Ostflügel	
Gesamt	236,00	0,50	118,00		

Risikomaß

Verwendeter Zuschlagsfaktor f_z

Arbeitsblatt DWA-A 138

A138-XP

Version 2006

Dimensionierung von Versickerungsanlagen

Scheuermann u. Martin Software

Rohrbergstraße 7 65343 Eltville am Rhein Lizenznr.: 400-0706-0602

Projekt

Bezeichnung:

Neustadt a. d. Weinstraße, Roßlaufstraße Nord

Datum: 16. 3. 2015

Bearbeiter:

Herr Stöcklein

Bemerkung: Dezentrale Versickerungsanlage Ostflügel begrüntes Dach mit Rigolenanlage

Eingangsdaten			
angeschlossene undurchlässige Fläche Höhe der Rigole	A_u h	118 0,66	m² m
Breite der Rigole Drosselabfluss	b Q_Dr	0,80	m l/s
Speicherkoeffizient des Füllmaterials wassergesättigte Bodendurchlässigkeit Innendurchmesser des Rohres	s_R k_f d_i	0,95 3,4e-5	m/s m
Aussendurchmesser des Rohres Wasseraustrittsfläche	d_a A_Austritt		m cm²/m
Anzahl der Rohre Niederschlagsbelastung	i Station n	0 Neustadt 0.1	1/a
Zuschlagsfaktor	f_z	1,2	

Bemess	ung der V	ersickeru	ngsrigole
D	r_D(n)		Erforderliche Größe der Anlage
[min]	[l/(s·ha)]	[m]	
15	238,9	5,8	$ \begin{array}{ll} \underline{\text{Gesamtspeicherkoeffizient}} \\ \mathbf{s}_\text{RR} = 0.95 \\ \mathbf{s}_{RR} = \frac{s_R}{b \cdot h} \cdot \left[b \cdot h + i \cdot \frac{\pi}{4} \cdot \left(\frac{1}{s_R} \cdot d_i^2 - d_o^2 \right) \right] \\ \underline{\text{erforderliche Rigolenlänge}} \\ \mathbf{I} = \frac{A_u \cdot 10^{-7} \cdot r_{D(n)} - Q_{Dr}}{\frac{b \cdot h \cdot s_{RR}}{D \cdot 60 \cdot f_Z} + (b + \frac{h}{2}) \cdot \frac{k_f}{2}} \\ \underline{\text{effektives Rigolenspeichervolumen}} \\ \mathbf{V} = \mathbf{4.3 \ m^3} \\ \\ \underline{\mathbf{rechnerische Entleerungszeit}} \\ \mathbf{t}_E = \mathbf{7.3 \ h} \\ \mathbf{t}_E = \frac{V}{\frac{k_f}{2} \cdot (b + \frac{h}{2}) \cdot I + Q_{Dr}} \\ \end{array} $
20	202,3	6,5	
30	157,3	7,4	
45	120,3	8,2	
60	98,6	8,6	
90	69,2	8,5	
120	53,9	8,2	
180	38,0	7,7	
240	29,6	7,2	
360	20,9	6,4	
540	14,8	5,4	
720	11,6	4,7	
1080	8,3	3,8	
1440	6,7	3,3	
2160	5,1	2,7	
2880	4,3	2,3	
3600	3,5	2,0	
4320	2,9	1,6	

Speyerbach Carré GbR

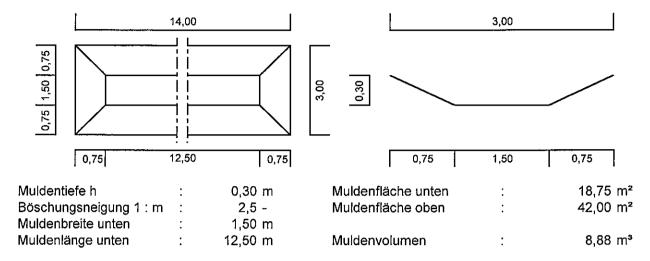
Neustadt an der Weinstraße, IBAG/Roßlaufstraße Nord

Anlage I

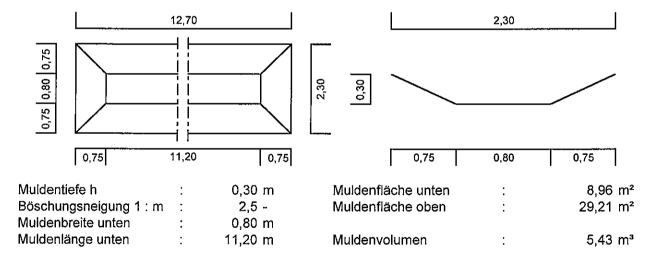
Ermittlung Flächen Einzugsgebiet Versickerungsanlagen

Bereich Ostflügel

Private Flächen


BA-Nr.	Flächentyp	Grundstücks- fläche	GRZ	A _E (m²)	Abfluss- beiwert	A _u (m²)
O-12	Dachfläche	590	0,40	236,00	1,00	236,00
Gesamtsumme				236,00		236,00

Anlage I


Speyerbach Carré - Erschließung IBAG/Roßlaufstraße-Nord in Neustadt a. d. Weinstraße

Berechnung des Mulden-/Rigolenvolumens der Versickerungsanlage

Muldenvolumen Einzelhäuser Ostflügel bei Muldenversickerung

Muldenvolumen Einzelhäuser Ostflügel bei Mulden-Rigolen-Versickerung

Rigolenvolumen Einzelhäuser Ostflügel bei Rigolen-Versickerung in Verbindung mit Gründach

Kennzahlen eines Einze	lelemen	tes		
Länge Einzelelement	:	0,80 m	Gewählte Anzahl Elemente Breite:	2 Stk
Breite Einzelelement	:	0,80 m	Gewählte Anzahl Elemente Länge:	6 Stk
Höhe Einzelelement	:	0,66 m		
Speicherkoeffizient	•	0.95 -	Rigolenyolumen :	4 82 m³